Chemistry

The development of hydrogen (H2) as a fuel source is a promising solution for reducing greenhouse gases. One of the key challenges in utilizing hydrogen as a fuel is the production of this element through the splitting of water molecules. The process of breaking water into hydrogen and oxygen is complex and requires catalysts to
0 Comments
The study of halogen bonds has revealed how these interactions can be harnessed to control sequential dynamics in multifunctional crystals, leading to advancements in ultrafast-response times for multilevel optical storage. Halogen bonds, characterized by the attraction between a halogen atom and another electron-rich entity, play a significant role in crystal engineering and the development of
0 Comments
The traditional industrial process for converting methane into methanol is known to be energy and resource-intensive. Most of the catalyst systems used are based on rare and expensive transition or noble metals, making the process economically unviable for widespread use. This has been a significant barrier in the waste-to-wealth movement, which aims to convert greenhouse
0 Comments
Researchers at the University of Virginia School of Engineering and Applied Science have made a groundbreaking discovery in the field of chemical engineering. The team, led by assistant professor Gaurav “Gino” Giri, has found a way to make the fabrication of the miracle material MOF-525 practical for large-scale applications. This development has significant implications for
0 Comments
In a groundbreaking leap in the field of bioelectronics, Prof. Bozhi Tian’s lab has successfully developed what they call “living bioelectronics.” This innovative approach combines living cells, gel, and electronics in a way that seamlessly integrates with living tissue. The research, recently published in Science, showcases the potential of this technology to monitor and treat
0 Comments
Imagine a material that defies common sense – one that becomes wider and fatter when pulled and narrower and thinner when compressed. These materials, known as auxetics, possess a range of extraordinary properties that make them ideal for a variety of applications, from sneaker insoles to bomb-resistant buildings. Despite their immense potential, the introduction of
0 Comments
The field of biocatalysis has made significant strides in optimizing natural enzyme functions for synthetic chemistry. However, UC Santa Barbara researchers, led by chemistry professor Yang Yang, are pushing the boundaries even further by delving into completely new enzymatic reactions that have never been seen before in either chemistry or biology. While most research in
0 Comments
Proteins are essential components of living organisms, acting as molecular machines that carry out various processes vital for cell function. The three-dimensional structure of a protein plays a crucial role in its functionality, and analyzing these structures has become increasingly important in the field of protein research. In a recent study published in Nature Communications,
0 Comments
The study of protein-protein interactions is crucial for understanding cellular functions and processes in multicellular organisms. However, current methods often lack cellular context, making it difficult to study interactions in tissue-specific environments. This limitation inspired a collaborative research team at The University of Hong Kong to develop a novel approach called Methionine Analog-based Cell-Specific Proteomics
0 Comments
The utilization of the greenhouse gas CO2 as a chemical raw material could have significant benefits in terms of reducing emissions and decreasing the reliance on fossil feedstocks. A recent study published in Angewandte Chemie International Edition introduces a metal-free organic framework that has the potential to electrocatalytically produce ethylene, a crucial chemical raw material,
0 Comments